TABLE OF CONTENTS

- **INTRODUCTION** 2
- **WELCOME** 3
- **LITERATURE**
 - This month’s selected articles 4
 - Immunogenicity 7
 - Methods 7
 - Animal models 8
 - Biomarkers 9
 - Systemic Lupus Erythematosus 9
 - Rheumatoid Arthritis 10
 - Inflammatory Bowel Diseases 11
 - Multiple Sclerosis 12
 - Hemophilia 13
 - Basic immunology 13
 - Opinions/Commentaries/Across diseases reviews 14
- **REGULATION** 15
 - EMA 15
- **CONFERENCES & MEETINGS** 16
INTRODUCTION

A growing number of medicines are based on biological molecules such as proteins and monoclonal antibodies. These novel drugs have resulted in new, more effective treatments for a number of serious conditions. Yet sometimes these medicines trigger a response from the patient's immune system, which can decrease the effectiveness of the drug or cause severe side effects.

The aim of the IMI-founded ABIRISK project "Anti-Biopharmaceutical Immunization: Prediction and Analysis of Clinical Re to Minimize the Risk", is to shed new light on the factors behind this immune response. The project, which represents the first concerted effort to solve this problem, officially kicked off March 1st, 2012. ABIRISK project will aid in the creation of new, safer biopharmaceuticals (BPs) and also generate tools to determine how individual patients are likely to respond to them both in clinical trials and after release to the market.

The ABIRISK consortium (presently made up of thirty-five partners, twenty-four of which are academic institutions, nine are EFPIA member companies and two are small and medium enterprises, with thirteen countries represented), has been designed to meet all of these requirements in order to target three types of disorders: Hemophilia A, Multiple sclerosis and Inflammatory diseases: inflammatory rheumatisms (including rheumatoid arthritis) and inflammatory bowel diseases.

ABIRISK Project will collect data both retrospectively from patients suffering from various types of diseases and treated with various BPs at European centers with a high level of experience in clinical research and will prospectively recruit additional patients in dedicated studies during the 5 years of this program. Guidelines and Standard Operating Protocols for the study of anti-drug immunization will be established and used to standardize the collection of prospective data from these patients.

ABIRISK Project thus represents a unique opportunity to create an interdisciplinary task force of clinical centers especially designed to study immune responses against biopharmaceuticals.
Dear Reader,

We would like to welcome you to the October 2014 issue of the ABIRISK Scientific Newsletter. The Scientific Newsletter gives you a monthly update on the most relevant literature related to ABIRISK topics published around the globe, both inside and outside ABIRISK consortium.

This month, we chose to highlight the work of Chen and colleagues on the development of mathematical model as new tools to predict immunogenicity of biotherapeutic proteins.

In addition, you will find in this issue some news on biopharmaceuticals from the regulatory agencies and a list of forthcoming scientific meetings.

We look forward to your visit on ABIRISK website for more information and updates on the program.

Enjoy reading!

Best wishes

The ABIRISK management team
In these papers, Chen et al. report on further advance* in the design of mathematical models which could serve as new tools for predicting immunogenicity of therapeutic proteins.

In **part 1**, a multiscale model was established, which recapitulates and accounts for, at the subcellular (antigen presentation), cellular (humoral response kinetics), and whole-body (drug availability) levels, the cascade of biological events underlying the development of unwanted immunogenicity. A total of 88 parameters were included. When inputted with parameters for a hypothetical therapeutic antigen, the model could simulate the human kinetic profiles for DC, T cells, B cells and anti-drug antibody (ADA) production.

Interestingly, when key parameter conditions alleged to impact ADA production were altered, the authors found that the magnitude and timing of ADA production was more affected by the T than the B cell naïve repertoire, as depicted below:

![Graphs](image-url)
Binding of drug T cell epitopes to MHC class II molecules was also found to greatly impact on ADA magnitude of response. The model also predicted an enhanced secondary humoral response, accompanied with affinity maturation of ADA, consistent with many immunological observations.

In part 2, the authors firstly demonstrated a reasonable agreement of the simulated T and B cell responses with in vivo data generated in a well established model of immune responses to the OVA antigen in the mouse. Next, simulation was conducted for one then 1,000 virtual human subjects under adalimumab treatment. Simulation results confirmed that the number of T cell epitopes had a high impact on ADA development. As ADA levels were found to strongly impact drug availability, the model was further used to replicate a clinical trial with adalimumab and ADA and through levels simulation data were compared to existing real clinical trial measurements.

As shown below, and despite some differences discussed by the authors, the predicted and reality figures still displayed the same high-level trend, which is a reduction of drug exposure in ADA+ patients:

![Graph showing reduction of drug exposure](image)

Further improvement of the model is planned through integration of additional parameters also thought to play a role in the development of unwanted immunogenicity, such as formulation excipient, drug aggregation, comedication, or patient immune status.

* see 'Article of the month' in ABIRISK Scientific Newsletter October 2013
A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1-theoretical model.
Chen X, Hickling TP, Vicini P.

A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 2-model applications.
Chen X, Hickling TP, Vicini P.
Immunogenicity

Recombinant factor VIII products and inhibitor development in previously untreated boys with severe hemophilia A.

Influence of Combination Therapy with Immune Modulators on Anti-TNF Trough Levels and Antibodies in Patients with IBD.
Inflamm Bowel Dis. 2014 Sep 16.

Golimumab trough levels, antidrug antibodies and clinical response in patients with rheumatoid arthritis treated in daily clinical practice.

Methods

Rapid establishment of a HEK 293 cell line expressing FVIII-BDD using AAV site-specific integration plasmids.
Liu X, Ping H, Zhang C.
BMC Res Notes. 2014 Sep 10;7:626.

High-Throughput Thermal Stability Analysis of a Monoclonal Antibody by Attenuated Total Reflection FT-IR Spectroscopic Imaging.
Boulet-Audet M, Byrne B, Kazarian SG.
Krayukhina E, Tsumoto K, Uchiyama S, Fukui K.

Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor.
Manetta J, Bina H, Ryan P, Fox N, Witcher DR, Kikly K.

Animal models

From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development.

Development of ADA Against Recombinant Human Interferon Beta in Immune Tolerant Mice Requires Rapid Recruitment of CD4+ T Cells, Induces Formation of Germinal Centers but Lacks Susceptibility for (Most) Adjuvants.
Kijanka G, Sauerborn M, Boon L, Schellekens H, Brinks V.

Role of coagulation-associated processes on FVIII immunogenicity in a mouse model of severe hemophilia A.
Gangadharan B, Delignat S, Ollivier V, Gupta N, Mackman N, Kaveri SV, Lacroix-Desmazes S.

Preclinical development of AMG 139, a human antibody specifically targeting IL-23.

Mechanisms of TNFα antagonist-induced lupus in a murine model.
Arthritis Rheumatol. 2014 Sep 23.
Biomarkers

CXCL13 predicts disease activity in early rheumatoid arthritis and could be an indicator of the therapeutic window of opportunity

Disease Activity Improvement in Rheumatoid Arthritis Treated with Tumor Necrosis Factor-α Inhibitors Correlates with Increased Soluble Fas Levels.
J Rheumatol. 2014 Sep 1.

High levels of natural killer cells are associated with response to tocilizumab in patients with severe rheumatoid arthritis.
Daïen CI, Gailhac S, Audo R, Mura T, Hahne M, Combe B, Morel J.

Systemic Lupus Erythematosus

Type I interferon blockade in systemic lupus erythematosus: where do we stand?
Lauwers BR, Dureux J, Houssiau FA.

Belimumab in systemic lupus erythematosus -- what can be learned from longterm observational studies?
Bengtsson AA.

Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients.
McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC.
Rheumatoid Arthritis

Efficacy and safety of tocilizumab in elderly patients with rheumatoid arthritis.
Joint Bone Spine. 2014 Sep 17.

van Herwaarden N, den Broeder AA, Jacobs W, van der Maas A, Bijlsma JW, van Vollenhoven RF, van den Bemt BH.

Safety and efficacy of etanercept in children with juvenile idiopathic arthritis below the age of 2 years.
Windschall D, Müller T, Becker I, Horneff G.
Rheumatol Int. 2014 Sep 11.

Judicious use of biologicals in juvenile idiopathic arthritis.
Zhao Y, Wallace C.

Early lessons from the recent-onset rheumatoid arthritis cohort ESPOIR.
Combe B, Rincheval N.
Joint Bone Spine. 2014 Sep 16.

The 2013 BSR and BHPR guideline for the use of intravenous tocilizumab in the treatment of adult patients with rheumatoid arthritis.

Certolizumab pegol (CDP870) for rheumatoid arthritis in adults.
Pharmacokinetics and concentration-effect relationship of adalimumab in rheumatoid arthritis.

Biologic-free remission of established rheumatoid arthritis after discontinuation of abatacept: a prospective, multicentre, observational study in Japan.

The use of biologic therapies in the treatment of rheumatoid arthritis.
Wang D, Li Y, Liu Y, Shi G.

Memory B cell subsets and plasmablasts are lower in early than in long-standing Rheumatoid Arthritis.
Fedele AL, Tolusso B, Gremese E, Bosello SL, Carbonella A, Canestri S, Ferraccioli G.

Assessing the likelihood of new-onset inflammatory bowel disease following tumor necrosis factor-alpha inhibitor therapy for rheumatoid arthritis and juvenile rheumatoid arthritis.
Krishnan A, Stobaugh DJ, Deepak P.
Rheumatol Int. 2014 Sep 17

Inflammatory Bowel Diseases

Vedolizumab: An α4β7 Integrin Inhibitor for Inflammatory Bowel Diseases.
Smith MA, Mohammad RA.

Vedolizumab for induction and maintenance of remission in ulcerative colitis.

Longitudinal study of circulating protein biomarkers in inflammatory bowel disease.
J Proteomics. 2014 Sep 16.
Lie MR, Peppelenbosch MP, West RL, Zelinkova Z, van der Woude CJ.

Management of inflammatory bowel disease in poor responders to infliximab.
Guerra I, Bermejo F.

Editorial: drug monitoring targets for optimising adalimumab in Crohn’s disease.
Swoger JM, Levesque BG.

Role for Therapeutic Drug Monitoring During Induction Therapy with TNF Antagonists in IBD: Evolution in the Definition and Management of Primary Nonresponse.
Inflamm Bowel Dis. 2014 Sep 12.

Augustine JM, Lee JK, Armstrong EP.

Development of Drugs to Target Interactions Between Leukocytes and Endothelial Cells and Treatment Algorithms for Inflammatory Bowel Diseases.
Danese S, Panés J.
Gastroenterology. 2014 Sep 16.

Multiple Sclerosis

Marziniak M, Meuth S.

Review of the novelties presented at the 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) (1).
Single-use autoinjector for once-weekly intramuscular injection of IFNβ-1a.
Limmroth V, Gerbershagen K.

Gender effects on treatment response to interferon-beta in multiple sclerosis.
Magyari M, Koch-Henriksen N, Laursen B, Sørensen PS.

Hemophilia

A large-scale computational study of inhibitor risk in non-severe haemophilia A.
Shepherd AJ, Skelton S, Sansom CE, Gomez K, Moss DS, Hart DP.

Basic immunology

The alarmin IL-33 promotes regulatory T-cell function in the intestine.

Intersection of population variation and autoimmunity genetics in human T cell activation.

Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4.
Opinions/Commentaries/Across diseases reviews

Editorial: biologics in autoimmune diseases.
Shi G, Liu Y.

Current therapeutic agents and treatment paradigms for the management of rheumatoid arthritis.
Gibofsky A.

Are sample sizes of randomized clinical trials in rheumatoid arthritis too large?
Celik S, Yazici Y, Yazici H.

IL-1 blockade in autoinflammatory syndromes.
Jesus AA, Goldbach-Mansky R.
OCTOBER 2014

REGULATION

EMA

Opinion/decision on a Paediatric Investigation Plan (PIP): Simponi, golimumab. Therapeutic area: Immunology-Rheumatology-Transplantation
Updated
September 2014

Human medicines European public assessment report (EPAR): Betaferon, interferon beta-1b
Revision: 25, Authorised
September 2014

Human medicines European public assessment report (EPAR): RoActemra, tocilizumab
Revision: 14, Authorised
September 2014

Human medicines European public assessment report (EPAR): Remsima, infliximab
Revision: 4, Authorised
September 2014

Human medicines European public assessment report (EPAR): Remicade, infliximab
Revision: 42, Authorised
September 2014

Human medicines European public assessment report (EPAR): Avonex, interferon beta-1a
Revision: 21, Authorised
September 2014

Human medicines European public assessment report (EPAR): Rebif, interferon beta-1a
Revision: 29, Authorised
September 2014

Human medicines European public assessment report (EPAR): Enbrel, etanercept
Revision: 40, Authorised
CONFERENCES & MEETINGS

<table>
<thead>
<tr>
<th>Month</th>
<th>Event</th>
<th>Dates</th>
<th>Location</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>AAPS Annual Meeting</td>
<td>2-6, San Diego, USA</td>
<td>http://www.aaps.org/annualmeeting/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACR/ARHP</td>
<td>14-19, Boston, USA</td>
<td>http://acrannualmeeting.org/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immunogenicity and Bioassays Summit 2014</td>
<td>17-19, Bethesda, USA</td>
<td>http://www.immunogenicitysummit.com</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>January</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>Immunogenicity and Immunotoxicity Conference</td>
<td>29-30, San Diego, CA, USA</td>
<td>https://www.gtcbio.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biotherapeutics Analytical Summit</td>
<td>9-13, Baltimore, USA</td>
<td>http://www.biotherapeuticsanalyticalsummit.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>World Immune Regulation Meeting</td>
<td>18-21, Davos, Switzerland</td>
<td>http://wirm.ch/index.html</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>PEGS summit</td>
<td>4-8, Boston, USA</td>
<td>http://www.pegsummit.com/</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>ECI + ABIRISK symposium and SC meeting</td>
<td>5-9, Vienna, Austria</td>
<td>http://wwweci-vienna2015.org/</td>
<td></td>
</tr>
</tbody>
</table>